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Abstract. This work discusses asymptotic convergence of scaled genetic
algorithms in a coevolutionary setting where the underlying population
contains fixed numbers of creatures of various types. These types of crea-
tures can act on each other in cooperative or competitive manner. The
genetic algorithm uses common mutation and crossover operators as well
as proportional fitness selection. By a scaled genetic algorithm, we mean
that the mutation and crossover rates have to be annealed to zero in
proper fashion over the course of the algorithm, and power-law scaling is
used for the fitness function with (unbounded) logarithmic growth in the
exponent. In the case that a scaled (non-elitist, non-memory) genetic al-
gorithm is used as function optimizer, it has been shown [Theoret. Com-
put. Sci. 310, p. 181] that such an algorithm is able to find global optima
asymptoticly with probability one. However, in the case of a coevolution-
ary setting, global optima need not exist. Based upon a properly defined,
population-dependent fitness function, the set of creatures of a specific
type can be canonically grouped into equivalence classes such that all
members of one equivalence class are either inferior or superior to all
members of another class. We show that in the situation of a coevolu-
tionary setting, a scaled genetic algorithm at least retains the property
of converging to a probability distribution over such populations that
contain only copies of one creature from the top-class for every or a se-
lected group of types while on the other hand maintaining a noisy field
of test-cases.

1 Introduction

This work discusses a scaled, non-elitist, non-memory genetic algorithm in a
coevolutionary setting that, in principle, is able to find global optima asymptot-
ically. The algorithm, which is a significant extension of algorithms described in
[21,22,24] is new in that: (1) it allows for parts of the population to be optimized
while other parts remain “noisy” and provide for a “challenging” environment in
which the optimization takes place; and (2) some “unnatural” condition on the
fitness function used in [21,22] and, in case of a coevolutionary interpretation,
also in [24, Thm. 3.3.2, Cors. 3.3.3–4] is removed such that a classification-
algorithm is obtained in a very general situation.

1.1. Optimization Tasks in a Coevolutionary Setting. In order to give a
precise account what is to be optimized in a coevolutionary setting in contrast to,
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e.g., investigations of population dynamics as in [8,12], let us start the discussion
by listing a few examples:

Example 1.1.1 (Single-species competitive setting): A typical example for
a single-species setting where a coevolutionary optimization is performed is that
of deterministic game-playing strategies C. Such strategies (agents, programs)
are supposed to be encoded here as strings of symbols over a finite alphabet1 A
which are bounded in length with fixed upper bound �∈IN. If c, d∈C are game-
playing strategies, then they determine a number <c, d>∈{0,±1} depending
upon the outcome of the game. We set <c, d>=−1, if c wins; <c, d>=0 in case
of a draw; <c, d>=1, if d wins. The simplest definition for a positive, population-
dependent fitness function f(c, p), —where p is a population in which c resides—,
is then given by:

f(c, p) =
∑

c�=d∈p(1 − <c, d> ). (1)

While there may be no strategy c∈C that is not inferior to all other strategies
in the above setting (i.e., a global maximum), there likely exists a minimal
subset Cmax �=C of “superior” strategies such that for every c∈Cmax, d/∈Cmax and
every population p, one has f(c, p)>f(d, p), i.e., elements of Cmax are in any
population p superior to elements not in Cmax. Our approach to optimization in
this situation is to search for elements of Cmax. What we shall outline below is a
scaled genetic algorithm that asymptotically finds elements of Cmax essentially
without further uncontrollable assumptions on f or the coevolutionary setting.

Example 1.1.2 (Two-species competitive setting): A typical example for a
two-species competitive setting is obtained, if we distinguish in Example 1.1.1
between first-move strategies C1 and second-move strategies C2. For c1∈C1 and
c2∈C2 the fitness function can then be defined as:

f(c1, p) = exp(γ1
∑

c2∈p∩C2
<c1, c2> ), γ1 = −1, and (2)

f(c2, p) = exp(γ2
∑

c1∈p∩C1
<c1, c2> ), γ2 = 1. (3)

We assume here that the number of elements sj>0 of creatures cj∈p∩Cj is fixed
for j=1, 2 over the course of the algorithm, i.e., we do not allow for population-
dynamics.

Another example for a two-species, adversary setting would be to measure the
performance (i.e., execution time) <c1, c2> of sorting programs2 c1∈C1 acting
on unsorted tuples (test-instances) c2∈C2 of finite length �2∈IN. Here, we can
define the fitness function as in lines (2) and (3). Sorting programs c1∈C1 aim
for short execution times while unsorted tuples c2∈C2 aim for long execution
times.

1 A larger alphabet is favorable in several regards: (1) The length of creatures stays
smaller; consequently, the population-size can stay smaller (cf., lines (22,24,26)) and
the fitness-evaluation is computationally less extensive (cf., lines (2) and (3) and the
table in Sec. 2.2). (2) The mutation rate can be annealed to zero by a faster schedule
(cf., Def. 3.2.2). (3) The fitness-function can be exponentiated at a slower rate (cf.,
lines (23,25,27)) allowing the mixing operators more time in exploring the search
space.

2 Programs of length bounded by a fixed �1∈IN.
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Example 1.1.3 (Two-species cooperative setting): A typical example for a
two-species cooperative setting is the simultaneous performance-optimization of
interacting components of a system. Specifically, one may be interested in opti-
mizing the performance of a mechanical robot by computer-simulation in regard
to minimizing energy E= <·, ·> of motion. For example on the hardware-side
C1, one could optimize the layout or placement of parts. See [25] for application
of a genetic algorithm to such a setting. For example on the software-side C2,
one could be interested in finding a neural network [29] which is optimized3 to
control/correct certain aspects of the motion but is required to be “robust”, i.e.,
handle various types of situations uniformly well. Here, we can define the fitness
function as in lines (2) and (3) with γ1=γ2=−1.

In the settings of both Examples 1.1.2 and 1.1.3, we intend to find “superior”
elements in the top-classes Cmax

1 ⊂ C1 and Cmax
2 ⊂ C2 similar to the case of

Example 1.1.1 (see also footnote 4). Altogether, we have:

Consider a coevolutionary setting as in the above examples 1.1.2 and 1.1.3 where
creatures of different types of species Cj interact via an IR-valued duality or eval-
uation procedure <·, · · ·> . Such a setting gives rise to a species- and population-
dependent fitness function f in a canonical way as in lines (2) and (3). No global
optima for f may exist within some or all of the species Cj. In this presenta-
tion, we shall aim to describe a dynamically scaled genetic algorithm that finds
creatures (candidate solutions) that are “optimal” in a simple and natural sense
without uncontrollable restrictions on the coevolutionary setting.

1.2. Optimization with Genetic Algorithms. Genetic algorithms, a partic-
ular case of evolutionary algorithms, were invented by Holland [11] and are by
now a well-established tool for search and optimization. Techniques using the
operational framework of genetic algorithms have significant applications in me-
chanical and electrical engineering such as, e.g., the construction of the turbine
for the engine of the Boeing 777 airplane [26, discussion of p. 2357–8] or design of
electric circuits [15] and antennas [16,26]. The common usage of a genetic algo-
rithm as function optimizer for a (fitness-)function f : C → IR+ as described, e.g.,
in [10,27] or [20,24] is as follows: first a population p is initiated as an s-tuple of
creatures c1, . . . cs∈C (s∈2IN), then three operations —crossover, mutation, and
fitness-selection— are applied cyclically and iteratively to the creatures in the
population until a termination condition is satisfied. The combined crossover-
mutation phase of a genetic algorithm is also called the mixing-phase of the al-
gorithm, cf. [27, p. 32]. Crossover is inspired by exchange of genetic information
in living organisms, e.g., during the process of sexual reproduction. Mutation
is inspired by random change of genetic information in living organisms, e.g.,
through the effects of radiation or chemical mismatch. Fitness selection models
increased reproductive success of organisms c that are better adapted to their
environment (i.e., have higher value f(c)). Usually, fitness selection includes a
random arrangement of selected creatures/individuals in the population.
3 We note that the often-used back-propagation algorithm for neural networks [29, p.

187] is a gradient method which is not guaranteed to find a global minimum.
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The introduction of [24, pp. 183-4, 186-7] lists a collection of references in re-
gard to theoretical approaches to asymptotic convergence of genetic algorithms.
Most of these approaches require satisfaction of some auxiliary condition on the
algorithm or problem-setting in order to achieve convergence such as using the
elitist strategy [18] or an infinite population limit [27, p. 147]. In [24, Thm. 3.3.2,
Cors. 3.3.3-4] asymptotic convergence to global optima is shown for a genetic al-
gorithm with arbitrary fitness function that satisfies all goals (1)–(4) formulated
in [4, p. 270] and is much in the spirit of the simulated annealing algorithm. In
particular, the scaled genetic algorithm described in [24] operates with a small
population-size s that can be set by the user as low as �+1 (� length of creatures).
In addition, the techniques and results in [24] essentially solve the single-species
coevolutionary optimization problem as described in Example (1.1.1) which,
however, shall be considerably extended below.

1.3. De Jong’s Challenge. In [7], the need for a theoretical framework for
coevolutionary genetic algorithms and possible convergence theorems in regard
to coevolutionary optimization (“arms races”) was emphasized. Such a theo-
retical framework requires, in particular, treatment of a population-dependent
fitness function. While there is a substantial amount of work in: (1) practical
applications, and (2) experiments with the setting of coevolutionary algorithms,
theoretical advance in regard to convergence seems to be limited. Some static
aspects of coevolutionary genetic algorithms in regard to the order on creatures
(i.e., in our notation elements of C1) and test-instances (i.e., elements of C2)
have been investigated, e.g., in [1,2]. Work in [6] discusses convergence of the
evaluation procedure towards an ideal evaluation function. A thorough investi-
gation of complexity/convergence of a (1 + 1) coevolutionary algorithm without
crossover for maximization of pseudo-Boolean functions can be found in [14].
However, there seems to be no black-box-scenario, coevolutionary global opti-
mization theorem in the literature except results in [20, Thm. 8.6, Rem. 8.7] for a
population-dependent fitness function with single dominant creature in a single-
species setting, [24, Thm. 3.3.2, Cors. 3.3.3-4] for a population-dependent fitness
function with a ‘set of strictly dominant creatures of equal fitness’ in a single-
species setting, and —already inspired by [7]— results with distinct crossover
operators in [21,22] for a population-dependent fitness function with a ‘set of
strictly dominant creatures of equal fitness for every species that is optimized’
in a multi-species setting.

The new algorithm described below addressees, in particular, the following
two problems:

1. The condition of a ‘set of strictly dominant creatures of equal fitness for ev-
ery species that is optimized’ shall be removed. Thus, the algorithm shall asymp-
totically deliver creatures from the top equivalence class(es)4 pertaining to the
fitness function with probability one. This addresses and solves (or circumvents)
the problem of intransitivity superiority [28, p. 702] in a reasonable manner.

4 The fitness function f defines a canonical relation ≤f on every type of species:
c≤fd ⇔ ∃p: f(c, p)≤f(d, p). If ≤≤f denotes the transitive closure of ≤f , then the
equivalence class of c is given by [c]={d : c ≤≤f d, and d ≤≤f c}.



142 L.M. Schmitt

2. Part of the population is kept “noisy” driven by constant, non-zero muta-
tion. This part need not be governed by a selection mechanism that converges
against the elitist strategy. This allows for maintenance of a larger diverse col-
lection of good “test-instance” within the population. In principle, techniques
proposed in [5], [6], and [9] could be incorporated in a properly designed en-
hancement/selection mechanism acting on the noisy part of the population.

2 Alphabets, Creatures, and Populations

In what follows, we shall restrict ourselves to the case of two species and shall
leave consideration of a coevolutionary setting for more species to the reader
along the discussion in [21,22]. Note also, that we do not treat here the version of
mixing put forward in [27], which produces only one child per mixing operation.
However, [21,22] and [24, Sec. 4.3] discuss how to incorporate this mixing in
the present framework by doubling the population-size s of the model for the
algorithm and considering “selector masks” for selection.

2.1. Alphabets and Creatures. Suppose that two disjoint alphabets

Aj = {aj(0), aj(1) . . . aj(αj −1)}, j=1, 2, (4)

are given which are used to encode creatures in Cj as strings over Aj of length
�j , i.e., Cj=(Aj)�j , j=1, 2.

As outlined in [20, Sec. 3.1], it may be advantageous to consider larger alpha-
bets representing finite, equidistant sets of real numbers in applications where
real parameters are optimized in a compact domain of IR�j . Such a point of view
is also supported in [17]. In addition, see footnote 1. Let V(1)

j ≡ Cαj be the free
vector space over Aj . Let A=A1 ∪ A2 be the combined set of letters considered
here.

Let nj∈IN such that nj < αj/2. We shall say that aj(ι), aj(ι′)∈Aj are close
neighbors, if ι�=ι′ and min{|ι − ι′|, αj − |ι − ι′|} ≤ nj .

Let C=C1 ∪C2 be the set of all possible creatures considered here. In contrast
to, e.g., [5], creatures (phenotypes) are identified with their genetic information
(genotypes). We suppose that an evaluation procedure or duality

<·, ·> : C1 × C2→IR (5)

exists which lets creatures of different types interact and gives rise to a fitness
function f defined in lines (2) and (3) above.

2.2. Populations. Let s1, s3∈2IN+2, s2, s4∈2IN0. Let ℘2j−n = (Cj)s2j−n for
j=1, 2, n=0, 1. The set of populations is now given by

℘ = ℘1 × ℘2 × ℘3 × ℘4. (6)

Thus, s=s1+s2+s3+s4 is the number of creatures in a population. The length
of a population as word over A is given by L=(s1+s2)�1+(s3+s4)�2.

We shall call the population p = (p1, p2, p3, p4) ‘multi-uniform at dedicated
positions’ or ‘partly uniform’ for short, if the sub-populations p1 and p3 contain
only copies of a single creature c1∈C1 and c2∈C2 respectively.
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Let V℘ = V(℘) be the free complex vector space over ℘. The defintion of ℘
in line (6) yields a canonical tensor-product decomposition of V℘:

V℘ = V(℘1) ⊗ V(℘2) ⊗ V(℘3) ⊗ V(℘4). (7)

Let S℘ be the set of probability distributions over ℘ which is the positive part
of the unit sphere of V℘ with respect to the �1-norm.

Let U ⊂ V℘ be the free vector space over all populations which are partly
uniform. Thus, ℘ ∩ U is the set of partly uniform populations. In addition, PU
shall denote the orthogonal projection onto U .

A population p and the action of the genetic algorithm described below are
then structured as shown in the following table:

Popul. p= p1 p2 p3 p4

Creatures in C1 C1 C2 C2

Position σ 1 . . . s1 s1+1 . . . s1+s2+1 . . . s1+s2+s3+1 . . .
of creatures s1+s2 s1+s2+s3 s

Position λ̂ 1 . . . s1�1 s1�1+1 . . . (s1+s2)�1+1 . . . (s1+s2)�1+s3�2+1
of letters (s1+s2)�1 (s1+s2)�1+s3�2 . . . L
Purpose optimize noisy test-set optimize noisy test-set
Mutation scaled constant scaled constant

rate µ→0 µ′>0 µ→0 µ′>0
Crossover scaled constant scaled constant

rate χ→0 χ′>0 χ→0 χ′>0
Fitness unbounded any unbounded any

evaluation scaled standard scaled standard
fitness-prop. method fitness-prop. method

3 The Genetic Operators

The genetic operators used in this exibition allow for (1) multi-spot mutation
Mµ̂,µ with a local action (i.e., the spot mutation matrix) on the alphabet level
that implements a localized search; (2) practically any know crossover operator
C(χ); and (3) selection St with scaled fitness-proportional selection on the parts
of the population that the user wants to optimize.

3.1. Spot Mutation Matrices. Let µ̂∈[0, 1]. For 1 ≤ λ̂ ≤ L, the spot mu-
tation matrices mj(µ̂) model change within the alphabets Aj for the letter
aj(ι) at single spot λ̂ in the combined genome of a population (j=1, 2). Let
aj(ι), aj(ι′)∈Aj such that ι�=ι′, 0 ≤ ι, ι′ ≤ αj −1. In what follows, we shall use
the stochastic matrix mj(µ̂) with zero-entries on the diagonal given by:

<aj(ι′),mj(µ̂)aj(ι)> = (1 − µ̂)/(2nj) + µ̂/(αj −1), (8)

if aj(ι′) and aj(ι) are close neighbors in the sense of Sec. 2.1, and otherwise

<aj(ι′),mj(µ̂)aj(ι)> = µ̂/(αj −1). (9)

Discussion of other choices for mj(µ̂) is left to the reader. Local change deter-
mined by mj(µ̂) is a continuous function of µ̂. The case µ̂=0 corresponds to
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uniform change within the preferred “small set of close neighbors” of the current
letter aj(ι) at spot λ̂ in the combined genome of a population in the spirit of the
simulated annealing algorithm. The case µ̂=1 corresponds to uniform random
change in Aj .

Note that by [19, p. 5: eq. (7’)] or [23, eq. (7)] any stochastic matrix has
operator norm 1 with respect to the �1-norm on the underlying vector space.
Hence, its spectrum is contained5 in the closed unit disk in C. Elementary spec-
tral calculus yields that a matrix of the form (1 − µ)1 + µmj(µ̂), µ∈(0, 1/2), is
invertible since its spectrum cannot contain 0.

3.2. Mutation. Let µ̂, µ̂′∈(0, 1] and µ, µ′∈(0, 1/2). We shall keep µ̂′ and µ′

fixed — a discussion of possible annealing schedules for µ̂′ and µ′ is left to the
reader. The mutation operator Mµ̂,µ is then given by the following procedure:

Definition 3.2.1 (Mutation operator): For λ̂=1 . . . L, execute the next two
steps: (Step 1) Decide probabilistically whether or not to change the letter
at spot λ̂ in the current population. The decision for change is made positively
with probability µ for λ̂∈[1, s1�1] ∪ [(s1+s2)�1+1, (s1+s2)�1+s3�2] in which case
we set τ=µ̂. Otherwise, the decision for change is made positively with constant
probability µ′, and we set τ=µ̂′. (Step 2) If the decision has been made
positively in step 1, then the letter at spot λ̂ is altered in accordance with the
transition probabilities for letters set by the spot mutation matrix mj(τ) where
j∈{1, 2} is chosen appropriately. 


Let Mµ̂,µ also denote the fully positive, stochastic matrix associated with
multiple-spot mutation that acts on V℘ and describes transition probabilities for
entire populations. It is easy to see that the coefficients of Mµ̂,µ are greater than
K · (µ̂µ)Lo where K>0 is a fixed constant and Lo=s1�1+s3�2.

Since V℘ is an L-fold tensor-product of spaces V(1)
j , j∈{1, 2}, the matrix Mµ̂,µ

is the L-fold tensor-product of invertible matrices of type (1−µ)1+µmj(µ̂) and is
therefore invertible (see, e.g., [24, line (7), Prop. 2.2.2.2 and Sec. 5] for details).
Using [24, Lemma 1.4.2.2], we can conclude that the steady state probability
distribution wt of a single step Gt of the scaled genetic algorithm as defined in
line (21) is uniquely determined. This allows to compute wt via Cramer’s rule
as in [24, p. 213: proof of Thm. 3.3.2], and makes it relatively easy to establish
strong ergodicity of the the inhomogeneous Markov chain which describes the
probabilistic behavior of the scaled genetic algorithm considered in this work.

Definition 3.2.2 (Mutation rate annealing schedule): Let ϕ>0 and to∈IN
be such that ϕt

−1/(κoLo)
o < 1/2, where κo∈[1,∞) is set by the user as described

below. Now, the annealing schedule for the mutation rate is given by:
µ = µ(t) = ϕ · t−1/(κoLo), t∈IN ∩ [to,∞).

In addition, let µ̂=µ̂(t) be defined by one of the following annealing schedules:

1. Constant local noise. Set κo=1. µ̂∈(0, 1] is kept constant.
2. Decreasing local noise. Choose κo∈(1,∞) and ϕ̂∈(0, µ(to)1−κo ]. Define:

µ̂(t) = ϕ̂ · µ(t)κo−1∈(0, 1] 

5 For a proof, consider stretching eigenvectors with respect to the �1-norm.
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As a consequence of Def. 3.2.2, we obtain by [24, Lemma 1.3.1] that the inhomo-
geneous Markov chain as defined in line (21) which describes the probabilistic
behavior of the scaled genetic algorithm considered in this work is weakly er-
godic. To show strong ergodicity, one employs [13, p. 160: Thm. V.4.3] or [23,
Thm. 3.3.2]. The prerequisites of these Theorems are verified using the facts
that: (1) the matrix-entries of the stochastic matrices C(χt), Mµ̂(t),µ(t), and
St representing the genetic operators crossover, mutation and selection have a
“nice” functional form6; (2) the steady state probability distribution of a single
step Gt of the scaled genetic algorithm as defined in line (21) can be computed
via Cramer’s rule as in [24, p. 213: proof of Thm. 3.3.2]; and (3) techniques
established in [24, Lemma 3.3.1, p. 213 bottom: proof of Thm. 3.3.2].

Finally, let us discuss the mutation-flow inequality associated with the setting
described thus far. First, define:

β = β(µ̂, µ) = min{||PUMµ̂,µp||1 : p∈℘ ∩ U} ∈ (0, 1). (10)

Then, one obtains the mutation flow inequality with the argument in [24, proof
of Prop. 2.2.3, second part] (Recall that U refers to ‘partly uniform’ here.):

∀v∈S℘: ||(1 − PU )Mµ̂,µv||1 ≤ 1 − β + β||(1 − PU )v||1. (11)

The mutation flow inequality is one of two key ingredients to show convergence to
partly uniform populations as µ→0 in the course of the scaled genetic algorithm.

3.3. Crossover. We consider a similar framework for crossover as in [24].
For crossover rate χ∈[0, 1], the crossover operator is represented by a stochastic
matrix C = C(χ) with entries that are rational functions in χ. The matrix
C(χ) acts on V℘ and describes transition probabilities for entire populations. It
satisfies:

C(0) = 1V(℘1) ⊗ Co
2 ⊗ 1V(℘3) ⊗ Co

4 , and ∀p∈℘ ∩ U : C(χ)p ∈ U . (12)

Here, V(℘1) and V(℘3) and the tensor product refer to the decomposition of
V℘ given in line (7). If no further information about the crossover operator is
known, then let the annealing schedule for the crossover rate be given by:

χt = φcµ(t)κo(�1+�2)+1, φc∈(0, µ(to)−κo(�1+�2)−1]. (13)

Compare the settings in line (13) with [24, Thm. 3.3.2, eqs. (41), (45)].
Now suppose that either the crossover operation C loc

n on sub-populations
℘n, n=1, 2, 3, 4, is given by regular one-, two-, or multiple-cutpoint crossover,
i.e., the creatures are paired sequentially (c1, c2), (c3, c4), ... (cs−1, cs), and with
probability χ for every pair (c2σ−1, c2σ) letters (genes) are exchanged within the
pairs of creatures in accordance with randomly chosen cutpoints; or suppose
that C loc

n is given by regular uniform or gene-lottery crossover. See, e.g., [10,
pp. 16–17], [27, p. 43] or [24, Sec. 2.4-5]. Suppose that χ, χ′∈(0, 1] are crossover
rates, χ′ is kept fixed over the course of the algorithm, and C(χ) is given by:

C(χ) = C loc
1 (χ) ⊗ C loc

2 (χ′) ⊗ C loc
3 (χ) ⊗ C loc

4 (χ′) (14)

6 See the second sentence of Sec. 3.3 for crossover; see the discussion after Def. 3.2.1
in regard to tensor products for mutation, or consult [24, Prop. 2.2.2.1]; and see [24,
line (33)] for selection.
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in regard to the tensor product decomposition of V℘ given in line (7). For reason
of simplicity, we shall keep C loc

1 = C loc
3 . Discussion of mixed cases shall be left

to the reader.
Let m∈[1,∞). We shall set the annealing schedule for the crossover rate as:

χt = φcµ(t)1/m, φc∈(0, µ(to)−1/m]. (15)

3.4. Selection and Convergence. We shall suppose that the (raw) fitness
function f is given as in lines (2) and (3) with γ1,2∈{±1}. The fitness function f
shall be power-law scaled, i.e., exponentiated over the course of the algorithm.
In fact, we set:

ft(c, p) = (f(c, p))g(t), g(t) = B · log(t − to + 2), (16)

for p∈℘, c∈p∩C, t∈IN∩[to,∞), and fixed B>0. In addition, set f(c, p)=ft(c, p)=0,
if p∈℘ and c∈C\p. In order to define the selection procedure, we set in accordance
with the table in Sec. 2.2, and the positions of creatures in the sub-populations
p1, p2, p3, p4 of a population p∈℘ defined there:

ρ1=1 ρ′
1=s1 ρ3=ρ′

2+1 ρ′
3=ρ′

2+s3 F1,t=F3,t=ft scaled
ρ2=ρ′

1+1 ρ′
2=ρ′

1+s2 ρ4=ρ′
3+1 ρ′

4=s F2,t=F4,t=f unscaled

Now, suppose that p = (c1, c2, . . . , cs), cσ∈C, 1 ≤ σ ≤ s is the current population.
At time or step t∈IN∩[to,∞), we attempt to select creatures randomly with prob-
ability proportional to their individual fitness-strength Fn,t, n=1, 2, 3, 4, within
the particular sub-population pn = (cσ : σ=ρn . . . ρ′

n) of p in which the creature
resides. If c∈C, then let let #(c, pn) denote the number of copies of c in pn. Now,
we can define the selection procedure:

Definition 3.4.1 (Selection operator St): With the current population p as
above assemble the new population q = (d1, d2, . . . , ds)∈℘ with dσ∈C, 1 ≤ σ ≤ s,
in the following manner: For n=1, 2, 3, 4 do: for σ=ρn, . . . , ρ′

n do:
Select creature dσ∈q probabilisticly among the creatures in pn such that a par-
ticular c∈pn has relative probability for being selected as dσ given by:

(
∑

ρn≤σ′≤ρ′
n

Fn,t(cσ′ , p))−1 · #(c, pn) Fn,t(c, p). 

Note that our definition of selection includes unscaled fitness proportional selec-
tion for segments p2 and p4 of the population p. This was chosen here for reason
of simplicity of presentation. In fact, most standard methods for selection such
as tournament selection can be used for segments p2 and p4; and this shall not
alter the main results of the discussion below.

Let St also denote the stochastic matrix associated with scaled proportional
fitness selection. St acts on V℘ and describes transition probabilities for entire
populations. It is easy to obtain an explicit formula for the coefficients of St as
in [24, line (33)] which is needed for the proofs of some of the statements made
in this exposition. However, we shall only list below some key properties of St

which differ from corresponding statements in [24, p. 206]:

∀p∈℘ ∩ U : Stp ∈ U . (17)

StPU = PUStPU ⇒ (1 − PU )St = (1 − PU )St(1 − PU ). (18)

∀p∈℘ ∩ U : ||PUStp||1 ≥ (s1)−s1+1(s3)−s3+1 =def 1 − θ. (19)
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∀v∈S℘: ||(1 − PU )Stv||1 ≤ θ · ||(1 − PU )v||1. (20)

The properties established in lines (11), (12), (18) and (20) together with an
adaptation of the techniques in the proof of [24, Thm. 3.1.1] show the following:
• The genetic algorithm considered here converges asymptotically to a probability
distribution w∞ over partly uniform populations only.

Finally, we can consider the inhomogeneous Markov chain that describes the
probabilistic behavior of the scaled genetic algorithm considered in this exposi-
tion. In fact, a single step at time t∈IN ∩ [to,∞) is described by the following
stochastic matrix (to is the intial value for t):

Gt = St · C(χt)1−k · Mµ̂(t),µ(t) · C(χt)k, where k=0, or k=1. (21)

Note that we do not suppose that crossover C(χt) and mutation Mµ̂(t),µ(t)
commute. Let wt=Gtwt∈S℘ denote the uniquely determined steady-state distri-
bution of an individual step Gt of the scaled genetic algorithm (cf., the discus-
sion following Def. 3.2.1). Let Ht=

∏to

τ=t Gτ . We have already established that
(Ht)t∈IN∩[to,∞) is strongly ergodic in the discussion following Def. 3.2.2. Hence,
for every vo∈S℘: limt→∞ Htvo = limt→∞ wt =def w∞.

We have outlined in the discussion after line (20) how to obtain that w∞ is
positive only over partly uniform populations. What remains to show is that:
• w∞ is positive only over such populations that contain elements from the ‘top
equivalence classes’ Cmax

1 ⊂ C1 and Cmax
2 ⊂ C2 as defined in footnote 4.

In order to achieve this, one establishes a ‘steady-state flow inequality’ for the wt

considered here similar to [24, lines (45–7)]. This yields the following conditions:

General type crossover: κo(�1 + �2) < min(s1, s3) (22)

General type crossover: κo(�1 + �2) < κoLoB log(ρ2(f)) + 1 (23)

Regular crossover: 2mκo(�1 + �2) < min(s1, s3) (24)

Regular crossover: κo(�1 + �2) < κoLoB log(ρ2(f)) + 1/m (25)

Gene-lottery crossover: mκo(�1 + �2) < min(s1, s3) (26)

Gene-lottery crossover: κo(�1 + �2) < κoLoB log(ρ2(f)) + 1/m (27)

Here, ρ2(f) is a constant measuring the strength of ‘second-to-best elements’ in
populations containing elements of Cmax

1 and Cmax
2 . In fact, ρ2(f) is given by:

T = {(p, ĉ, c) : p∈℘, p2j−1∩ Cmax
j �=∅, p2j−1\Cmax

j �=∅ for both j=1, 2, and
ĉ∈p2j−1∩ Cmax

j , c∈p2j−1\Cmax
j for one j=1, 2}

ρ2(f) = min{f(ĉ, p)/f(c, p) : (p, ĉ, c)∈T} (assume T �= ∅). (28)

ρ2(f) is easy to determine, if one employs rank (=f) for the fitness selection
mechanism based upon an originally-given raw fitness function fr.

Note that lines (24) and (26) show (with mathematical theory and not ex-
perimentally) the remarkable effect that with increasing population size, one is
allowed to use a more relaxed cooling schedule for crossover. Thus, for larger
population size, the part of the algorithm-design, i.e., definition of creatures
(data-structures), which is exploited by crossover plays a more important role.



148 L.M. Schmitt

Conclusion

We have obtained a new, all-purpose coevolutionary genetic algorithm suitable
for optimization in a multi-species setting for which a global optimization theo-
rem holds. The proposed algorithm is very much in the spirit of the simulated
annealing algorithm. It is realistic in that the population-size and consequently
evaluation-time for the fitness function stay relatively small. Explicite annealing
schedules for crossover/mutation and exponentiation schedules for the fitness-
function scaling are given such that the proposed algorithm, in fact, can be read-
ily implemented. The selection operator which uses fitness-proportional selection
applies the scaled fitness function only on part of the population in order to keep
the complementary part as a “noisy”, non-converging field of “test-instances”.
Thus, the proposed algorithm improves and generalizes a previously published
approach for a coevolutionary genetic algorithm in a multi-species setting by
removing some technical conditions on the latter and introducing new features
such as maintaining a noisy field of test-instances without loosing convergence
to global optima. Such convergence is here understood as convergence toward
populations contain only elements of canonical equivalence classes of “superior”
creatures (⇔ global optima) formed in relation to the fitness function. One im-
portant aspect of future research on this algorithm should be the incorporation
of various enhancement procedures for maintenance of “balanced and rich” sets
of test-instances within the population that have been proposed in the literature.
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